$\mathcal{T H E O R E M}: \mathcal{T H E} \operatorname{CONST\mathcal {ANT}\text {RULE}}$
The de rivative of a constant function is zero. That is, if c is a real number, then

$$
\frac{d}{d x}[c]=0
$$

Example 1: Find the derivative of the function $g(x)=\frac{d}{d x} 5$.

$$
g^{\prime}(x)=0
$$

$\mathcal{T H E O R E M}: \mathcal{T H E} \mathcal{P O} \mathcal{W} E R$ RULE
If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

For f to be differentiable at $x=0$, n must be a number such that x^{n-1} is defined on an interval containing zero.

Example 2: Find the following de rivatives.
a. $\frac{d}{d x} f(x)=\frac{d}{d x^{-5}}$
$f^{\prime}(x)=-5 x^{-6}=-\frac{5}{x^{6}}$
6. $\frac{d}{d x} f(x)=\frac{d}{d x^{1 / 2}}$
$\mathcal{T H E O R E M}: \mathcal{T H E} \mathcal{C O N S T \mathcal { A N S }} \mathcal{M O L I I}$ ISLE RULE
If f is a differentiable function and c is a real number, then cf is also differentiable and

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

Example 3: Find the slope of the graph of $f(x)=4 x^{2 / 3}$ at

$$
\begin{array}{cll}
\begin{array}{c}
\text { a. } x=x \\
\frac{d}{d x} f(x) \frac{d}{d x} 4 x^{2 / 3}
\end{array} & \text { 6. } x=125 & \text { c. } x=-64 \\
f^{\prime}(x)=4 \cdot \frac{2}{3} x^{-1 / 3}=\frac{8}{3 x^{1 / 3}} & f^{\prime}(x)=\frac{8}{3 \sqrt[3]{x}} & f^{\prime}(-64)=\frac{8}{3 \sqrt[3]{-64}} \\
& f^{\prime}(125)=\frac{8}{3 \sqrt[3]{125}} & f^{\prime}(-64)=-\frac{2}{3}
\end{array}
$$

The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f+g$ (or $f-g$) is the sum (or difference) of the derivatives of f and g.

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Example 4: Find the equation of the line tangent to the graph of $f(x)=x-\sqrt{x}$ at $\chi=4$.

1. Find $f_{-}^{\prime}(x)$ at $x=x$.

$$
f^{\prime}(x)=1-\frac{1}{2} x^{-1 / 2}
$$

$$
\begin{aligned}
& \frac{d}{d x} f(x) \frac{d}{\bar{d} x}\left(x-x^{1 / 2}\right) \quad f^{\prime}(x)=1-\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(x)=\frac{d}{d x} x-\frac{d}{d x} x^{1 / 2}
\end{aligned}
$$

2. Find slope at $x_{-}=4$

$$
\begin{aligned}
& f^{\prime}(4)=1-\frac{1}{2 \sqrt{4}} \\
& f^{\prime}(4)=\frac{3}{4}
\end{aligned}
$$

3. Find the equation of the line tangent to the graph at $x=4$ using the point --slope form of the equation of the line.
Find $f(4): f(x)=x-\sqrt{x}$

$$
\begin{aligned}
& f(4)=4-\sqrt{4} \\
& f(4)=2
\end{aligned}
$$

so $(4,2)$ is a point on f and on the tangent line

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{3}{4}(x-4)
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\cos x]=-\sin x \\
\frac{d}{d x}[\csc x]=-\csc x \cot x & \frac{d}{d x}[\sec x]=\sec x \tan x \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & \frac{d}{d x}[\cot x]=-\csc ^{2} x
\end{array}
$$

Example 5: Find the de rivative of the following functions:

$$
\begin{aligned}
& a \frac{d}{d x} f(x)=\frac{\sin x}{6}=\frac{d}{d x} \frac{1}{6} \sin x \\
& f^{\prime}(x)=\frac{1}{6} \cos x \\
& 6 \frac{d}{d \theta} r(\theta) \frac{d}{d \hat{A}}(5 \theta-3 \cos \theta) \\
& r^{\prime}(\theta)=5-3(-\sin \theta) \\
& r^{\prime}(\theta)=5+3 \sin \theta \\
& \text { c. } h(t)=\frac{\cos t}{\cot t}=\frac{\cos t}{\frac{\cos t}{\sin t}}=\cos t \cdot \frac{\sin t}{\cos t}=\sin t \\
& \frac{d}{d t} h(t) \frac{d}{d t} \sin t \xrightarrow{\sin t} h^{\prime}(t)=\cos t \\
& \underset{d x}{d x} f(x) \stackrel{d}{d x}=(12+7 \sec x) \\
& f^{\prime}(x)=0+7 \sec x \tan x \\
& \sec x=\frac{1}{\cos x}=(\cos x)^{-1} \\
& f^{\prime}(x)=7 \sec x \tan x \\
& e_{a x}^{a} \cdot d(x) d x(-\tan x+x) \\
& f^{\prime}(x)=-\sec ^{2} x+1
\end{aligned}
$$

$\mathcal{T H E O}$ REM: $\mathcal{T H E}$ PRO DUCT RULE
The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f g$ is the derivative of the first function times the second function, plus the first function times the derivative of the second function.

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This rule extends to cover products of more than two factors. For example the de rivative of the product of functions fghk is

$$
\frac{d}{d x}[f g h k]=f^{\prime}(x) g(x) h(x) k(x)+f(x) g^{\prime}(x) h(x) k(x)+f(x) g(x) h^{\prime}(x) k(x)+f(x) g(x) h(x) k^{\prime}(x)
$$

Example 6: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.

$$
\begin{aligned}
& \frac{d . d}{d x} g(x) d x \\
& g^{\prime}(x)=\left(\frac{d}{d x} x\right) \cos x+x\left(\frac{d}{d x} \cos x\right) \\
& g^{\prime}(x)=1 \cos x+x(-\sin x) \\
& g^{\prime}(x)=\cos x-x \sin x
\end{aligned}
$$

$$
\begin{aligned}
& 6^{\frac{d}{d}} h(t)=(3-\sqrt{t})^{2}=\frac{d}{d t}\left[\left(3-t^{1 / 2}\right)\left(3-t^{1 / 2}\right)\right] \\
& h^{\prime}(t)=\left[\frac{d}{d t}\left(3-t^{1 / 2}\right)\right]\left(3-t^{1 / 2}\right)+\left(3-t^{1 / 2}\right)\left[\frac{d}{d t}\left(3-t^{1 / 2}\right)\right] \\
& h^{\prime}(t)=\left(-\frac{1}{2} t^{-1 / 2}\right)\left(3-t^{1 / 2}\right)+\left(3-t^{1 / 2}\right)\left(-\frac{1}{2} t^{-1 / 2}\right) \\
& h^{\prime}(t)=-t^{-1 / 2}\left(3-t^{1 / 2}\right) \\
& h^{\prime}(t)=-\frac{\left(3-t^{1 / 2}\right)}{t^{1 / 2}}
\end{aligned}
$$

$\mathcal{T H E O R E M}: \mathcal{T H E} Q \mathcal{U C O I E N T}$ RULE
The quotient of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the de rivative of f / g is the derivative of the numerator times the denominator, minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

Example 7: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.

$$
\begin{aligned}
& h^{\prime}(t)=\frac{(d / d t)\left(t^{1 / 2}-1\right)-t\left[\frac{d}{d t}\left(t^{1 / 2}-1\right)\right]}{(\sqrt{t}-1)^{2}} \quad \rightarrow h^{\prime}(t)=\frac{t^{\prime / 2}-1-\frac{1}{2} t^{1 / 2}}{(\sqrt{t}-1)^{2}} \\
& h^{\prime}(t)=\frac{1\left(t^{1 / 2}-1\right)-t\left(\frac{1}{2} t^{-1 / 2}\right)}{(\sqrt{t}-1)^{2}}
\end{aligned} \quad h^{\prime}
$$

$$
h^{\prime}(t)=\frac{t^{1 / 2}-2}{2(\sqrt{t}-1)^{2}}
$$

$$
\begin{aligned}
& a d g(x)=\frac{2 x}{5 x^{2}+3} \\
& g^{\prime}(x)=\frac{\left(\frac{d}{d x} 2 x\right)\left(5 x^{2}+3\right)-(2 x)\left[\frac{d}{d x}\left(5 x^{2}+3\right)\right]}{\left(5 x^{2}+3\right)^{2}} \\
& g^{\prime}(x)=\frac{2\left(5 x^{2}+3\right)-2 x(10 x)}{\left(5 x^{2}+3\right)^{2}} \\
& \begin{array}{l}
6 \frac{d}{d t} h(t) \xlongequal{\#} \frac{t}{\sqrt{t}-1} \\
d t
\end{array} \\
& \text { c. } h(t)=\frac{\cot t}{t} \\
& h^{\prime}(t)=\frac{\left(-\csc ^{2} t\right) t-(\cot t)(1)}{t^{2}} \\
& h^{\prime}(t)=\frac{-t \csc ^{2} t-\cot t}{t^{2}}
\end{aligned}
$$

Example 8: Find the given higher-order derivative.

$$
\begin{aligned}
& \text { a. } f(x)=2-\frac{2}{x}, f^{\prime \prime \prime}(x) \\
& f(x)=2-2 x^{-1} \\
& f^{\prime}(x)=2 x^{-2} \\
& f^{\prime \prime}(x)=-4 x^{-3} \\
& \text { 6. } f^{(4)}(x)=2 x+1, f^{(6)}(x) \\
& f^{(6)}(x)=2 \\
& f^{(6)}(x)=12 x^{-4}=\frac{12}{x^{4}} \\
& f^{(6)}(x)
\end{aligned}
$$

Theorem: The Chain Rule
If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable
function of x, then $y=f(g(x))$ is a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \text { or } \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

Example 9: Find the derivative using the Chain Rule.
a. $y=\left(\sqrt{x}-x^{2}\right)^{10}$

$$
\begin{aligned}
& \frac{d y}{d x}=10\left(x^{1 / 2}-x^{2}\right)^{9}\left(\frac{d}{d x}\left(x^{1 / 2}-x^{2}\right)\right. \\
& \frac{d y}{d x}=10\left(x^{1 / 2}-x^{2}\right)^{9}\left(\frac{1}{2} x^{-1 / 2}-2 x\right)
\end{aligned}
$$

not simplified
6.

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2-x}}=(2-x)^{-1 / 2} \\
& f^{\prime}(x)=-\frac{1}{2}(2-x)^{-3 / 2} \frac{d}{d x}(2-x) \\
& f^{\prime}(x)=-\frac{1}{2}(2-x)^{-3 / 2}(-1) \\
& f^{\prime}(x)=\frac{1}{2(2-x)^{3 / 2}}
\end{aligned}
$$

Example 10: Find the derivative of the following functions.
a. $y=\sin x$

$$
y^{\prime}=\cos x
$$

6. $y=\sin 2 x$

$$
\begin{aligned}
& y^{\prime}=\cos (2 x)\left(\frac{d}{d x} 2 x\right) \\
& y^{\prime}=2 \cos 2 x \\
& y=\sin ^{2} x
\end{aligned}
$$

$$
\left[2 \sin x \cdot \frac{1}{\cos x}\right.
$$

$$
\begin{aligned}
& y=(\sin x)^{2} \\
& y^{\prime}=2(\sin x)^{\prime}\left(\frac{d}{d x}(\sin x)\right)
\end{aligned}
$$

d. $y=\sin x^{2}$

$$
y^{\prime}=\sin 2 x
$$

$$
\begin{aligned}
& y^{\prime}=\cos \left(x^{2}\right)\left(\frac{d}{d x} x^{2}\right) \\
& y^{\prime}=2 x \cos x^{2} \\
& y^{\prime}=\frac{1}{2}(\cos x)^{-1 / 2} \sqrt{\cos x}=(\cos x)^{1 / 2} \\
& \left.y^{\prime}=-\frac{1}{2} \sin x \cos x\right] \\
& f \cdot f(x)=x^{-1 / 2}(2-x)^{2 / 3} \\
& f^{\prime}(x)=2 x(2-x)^{2 / 3}+x^{2}\left[\frac{2}{3}(2-x)^{-1 / 3}\left(\frac{d}{d x}(2-x)\right]\right. \text { product rule } \\
& f^{\prime}(x)=\frac{2 x(2-x)^{2 / 3}+\frac{2}{3} x^{2}(2-x)^{-1 / 3}(-1)}{f^{\prime}(x)=\frac{2}{3} x(2-x)^{-1 / 3}\left[3(2-x)^{\prime}-x\right]} \\
& f^{\prime}(x)=\frac{2}{3} x(2-x)^{-1 / 3}(6-4 x) \\
& f^{\prime}(x)=\frac{4 x(3-2 x)}{3(2-x)^{1 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { g. } h(x)=x \sin ^{2} 4 x=x(\sin 4 x)^{2} \\
& h^{\prime}(x)=1(\sin 4 x)^{2}+x\left[2(\sin 4 x)^{\prime}(\cos 4 x)(4)\right] \sin 8 x \\
& h^{\prime}(x)=\sin ^{2} 4 x+8 x \sin 4 x \cos 4 x=\sin ^{2} 4 x+4 x \sin 8 x
\end{aligned}
$$

Theorem：Derivative of the ⿻⿱乛龰一𧰨（aturaillogaritfmic Function Let u be a differentiable function of x ．

1．$\frac{d}{d x}[\ln x]=\frac{1}{x}, \chi>0$
2．$\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}, u>0$

Example 11：Find the derivative．

$$
\frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u},(-\infty, 0) u
$$

a．$y=(\ln x)^{3}$

$$
\begin{aligned}
& y^{\prime}=3(\ln x)^{2} \cdot \frac{1}{x} \\
& \left.y^{\prime}=\frac{3(\ln x)^{2}}{x}\right]^{\prime} \\
& f^{\prime}(x)=\frac{-\sin x}{\cos x} \\
& f^{\prime}(x)=-\tan x \\
& \ln ^{\prime}\left(h(t)=\ln x^{x}=x \ln x\right. \\
& \ln x x^{\prime} \\
& h(x)=\ln x^{x}=x \ln x \\
& h^{\prime}(x)=1 \ln x+x \cdot \frac{1}{x} \\
& h^{\prime}(x)=1+\ln x
\end{aligned}
$$

Let u be a differentiable function of x.

1. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
2. $\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}$

Example 12: Find the derivative.
a. $y=x e^{-x}$

$$
\begin{aligned}
& y^{\prime}=1 e^{-x}+x e^{-x}(-1) \\
& y^{\prime}=e^{-x}(1-x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } f(x)=e^{\sin 2 x} \\
& f^{\prime}(x)=e^{\sin 2 x}(\cos 2 x) \cdot 2 \\
& f^{\prime}(x)=2(\cos 2 x) e^{\sin 2 x} \\
& { }_{\text {c. }} h(t)=\frac{e^{t}}{\ln e^{\sqrt{t}}}=\frac{e^{t}}{\sqrt{t} \ln e}=\frac{e^{t}}{\sqrt{t}(1)}=\frac{e^{t}}{t^{1 / 2}} \\
& h^{\prime}(t)=\frac{e^{t} t^{1 / 2}-e^{t}\left(\frac{1}{2} t^{-1 / 2}\right)}{\left(t^{1 / 2}\right)^{2}} \\
& h^{\prime}(t)=\frac{\frac{1}{2} t^{-1 / 2} e^{t}\left(t^{\prime}-1\right)}{t} \\
& h^{\prime}(t)=\frac{e^{t}(t-1)}{2 t^{3 / 2}}
\end{aligned}
$$

Let a be a positive real number ($a \neq 1$) and let u be a differentiable function of χ.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) \mathrm{a}^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) \mathrm{a}^{u} u^{\prime}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$

Example 13: Find the de rivative.
a. $y=2^{3 x}$

$$
\begin{aligned}
& y^{\prime}=(\ln 2) 2^{3 x}(3) \\
& y^{\prime}=(\ln 8) 2^{3 x} \\
& y^{\prime}=(3 \ln 2) 2^{3 x} \\
& y^{\prime}=\left(\ln 2^{3}\right)\left(2^{3 x}\right) \\
& \text { 6. } f(x)=\log 5 x=\log _{10} 5 x \\
& f^{\prime}(x)=\frac{\nsubseteq}{\ln (0)(8 x)} \\
& f^{\prime}(x)=\frac{1}{x \ln 10} \text { or }
\end{aligned}
$$

 $\mathscr{F H V C T I O N S}$ (u is a function of x)

$$
\begin{array}{ll}
\frac{d}{d x}[\arcsin u]=\frac{d u / d x}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\arccos u]=-\frac{d u / d x}{\sqrt{1-u^{2}}} \\
\frac{d}{d x}[\operatorname{arccsc} u]=-\frac{d u \mid d x}{|u| \sqrt{u^{2}-1}} & \frac{d}{d x}[\operatorname{arcsec} u]=\frac{d u \mid d x}{|u| \sqrt{u^{2}-1}} \\
\frac{d}{d x}[\arctan u]=\frac{d u / d x}{1+u^{2}} & \frac{d}{d x}[\operatorname{arccot} u]=-\frac{d u / d x}{1+u^{2}}
\end{array}
$$

Example 14: Find the derivative.
a. $y=\arctan 3 x-\ln \left(1+9 x^{2}\right)$

$$
\begin{aligned}
& y^{\prime}=\frac{3}{1+(3 x)^{2}}-\frac{18 x}{1+9 x^{2}} \\
& y^{\prime}=\frac{3-18 x}{1+9 x^{2}}
\end{aligned}
$$

6. $f(x)=x \arcsin \sqrt{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\operatorname{larcsin} \sqrt{x}+x \frac{\frac{1}{2} x^{-1 / 2}}{\sqrt{1-(\sqrt{x})^{2}}} \\
& f^{\prime}(x)=\arcsin \sqrt{x}+\frac{x^{2}}{2 \sqrt{x} \sqrt{1-x}} \\
& f^{\prime}(x)=\frac{2 \sqrt{x} \sqrt{1-x} \arcsin \sqrt{x}+x}{2 \sqrt{x} \sqrt{1-x}}
\end{aligned}
$$

